Note

Click here to download the full example code

# Gradient of backpropagated quantities

If `backward()`

is called with
`create_graph=True`

, PyTorch creates the computation graph of the outputs
of the backward pass, including quantities computed by BackPACK.
This makes it possible to compute higher order derivatives with PyTorch,
even if BackPACK’s extensions no longer apply.

Warning

This feature should work with any BackPACK extension, but has not been extensively tested and should be considered experimental. We recommend that you test your specific setup before running large scale experiments. Please get in touch if something does not look right.

This example show how to compute the gradient of (the total variance of (the individual gradients)), along with some sanity checks.

Let’s get the imports and configuration out of the way.

```
import torch
from torch import nn
from backpack import backpack, extend
from backpack.extensions import Variance
from backpack.utils.examples import load_one_batch_mnist
torch.manual_seed(0)
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
```

We’ll start with some functions to compute the total variance, the sum of the variance along each dimension of the individual gradients, and it’s gradient.

We’ll assume that the data will be given as

```
# x : a [N, ...] tensor of inputs
# y : a [N, ...] tensor of targets
# model : an model extended with BackPACK that takes x as input
# loss : a loss function that takes model(x) and y as input
```

such that the loss is given by `loss(model(x), y)`

.

```
def total_variance_and_gradient_backpack(x, y, model, lossfunc):
"""Computes the total variance of the individual gradients and its gradient.
Uses BackPACK's :py:meth:`Variance <backpack.extensions.Variance>`
and PyTorch's :py:meth:`backward() <torch.Tensor.backward>`
pass with the argument ``create_graph=True``.
"""
model.zero_grad()
loss = lossfunc(model(x), y)
with backpack(Variance()):
loss.backward(retain_graph=True, create_graph=True)
total_var = 0
for p in model.parameters():
total_var += torch.sum(p.variance)
grad_of_var = torch.autograd.grad(total_var, model.parameters())
return total_var, grad_of_var
```

```
def individual_gradients_pytorch(x, y, model, lossfunc):
"""Computes the tensor of individual gradients using PyTorch.
Iterates over the samples to compute individual gradients.
Flattens and concatenates the individual gradients to return
a ``[N, D]`` tensor where
- ``N`` is the number of samples
- ``D`` is the total number of parameters
Calls :py:meth:`backward <torch.autograd.backward>` with ``create_graph=True``
to make it possible to backpropagate through the gradients again.
"""
model.zero_grad()
grads_vector_format = []
for i in range(x.shape[0]):
x_i = x[i, :].unsqueeze(0)
if len(y.shape) == 1:
y_i = y[i].unsqueeze(0)
else:
y_i = y[i, :].unsqueeze(0)
loss = lossfunc(model(x_i), y_i)
grad_list_format = torch.autograd.grad(
loss, model.parameters(), create_graph=True, retain_graph=True
)
grad_vector_format = torch.cat([g.view(-1) for g in grad_list_format])
grads_vector_format.append(grad_vector_format.clone())
return torch.stack(grads_vector_format)
def total_variance_and_gradient_pytorch(x, y, model, lossfunc):
"""Computes the total variance of the individual gradients and its gradient.
Uses ``individual_gradients_pytorch`` to compute the individual gradients.
"""
ind_grads = individual_gradients_pytorch(x, y, model, lossfunc)
variance = torch.var(ind_grads, dim=0, unbiased=False)
total_var = torch.sum(variance)
grad_of_var = torch.autograd.grad(total_var, model.parameters())
return total_var, grad_of_var
```

Let’s write a quick test to check whether the results returned by BackPACK
and PyTorch match, up to some precision. It’s not possible to get the same
result up to high precision without using higher floating point precision
(`torch.Tensor.double`

) as the two procedures do sums in different
orders and have different rounding errors.

```
def check_same_results(x, y, model, lossfunc):
"""Compares the results between the pytorch and backpack implementations."""
var_bp, grad_var_bp = total_variance_and_gradient_backpack(x, y, model, lossfunc)
var_pt, grad_var_pt = total_variance_and_gradient_pytorch(x, y, model, lossfunc)
print("Total variance is the same?")
print(" ", torch.allclose(var_bp, var_pt, atol=1e-4, rtol=1e-4))
print("Variance of the total variance w.r.t. parameters is the same?")
for (name, _), p_grad_var_bp, p_grad_var_pt in zip(
model.named_parameters(), grad_var_bp, grad_var_pt
):
match = torch.allclose(p_grad_var_bp, p_grad_var_pt, atol=1e-4, rtol=1e-4)
print(" {:<20}: {}".format(name, match))
```

We can now test some models. Let’s start with something simple, a linear model with 3 parameters on artificial data.

```
N, D = 3, 2
x = torch.randn(N, D).to(DEVICE)
y = torch.randn(N, 1).to(DEVICE)
model = extend(nn.Sequential(nn.Linear(D, 1, bias=False))).to(DEVICE)
lossfunc = torch.nn.MSELoss(reduction="sum")
check_same_results(x, y, model, lossfunc)
```

```
/home/docs/checkouts/readthedocs.org/user_builds/backpack/envs/master/lib/python3.7/site-packages/torch/autograd/__init__.py:199: UserWarning: Using backward() with create_graph=True will create a reference cycle between the parameter and its gradient which can cause a memory leak. We recommend using autograd.grad when creating the graph to avoid this. If you have to use this function, make sure to reset the .grad fields of your parameters to None after use to break the cycle and avoid the leak. (Triggered internally at ../torch/csrc/autograd/engine.cpp:1059.)
allow_unreachable=True, accumulate_grad=True) # Calls into the C++ engine to run the backward pass
Total variance is the same?
True
Variance of the total variance w.r.t. parameters is the same?
0.weight : True
```

We can also try a linear model on MNIST data

```
Total variance is the same?
True
Variance of the total variance w.r.t. parameters is the same?
1.weight : True
1.bias : True
```

And a small CNN for some architecture variety

```
x, y = load_one_batch_mnist(batch_size=32)
x, y = x.to(DEVICE), y.to(DEVICE)
model = extend(
torch.nn.Sequential(
torch.nn.Conv2d(1, 5, 5, 1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2, 2),
torch.nn.Flatten(),
torch.nn.Linear(720, 10),
)
).to(DEVICE)
lossfunc = torch.nn.CrossEntropyLoss(reduction="sum")
check_same_results(x, y, model, lossfunc)
```

```
Total variance is the same?
True
Variance of the total variance w.r.t. parameters is the same?
0.weight : True
0.bias : True
4.weight : True
4.bias : True
```

**Total running time of the script:** ( 0 minutes 0.286 seconds)